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A computer code is described which simulates the evolution of the axisymmetric toroidal 
region of a field-reversed mirror plasma. The code alternates between a I-D transport 
calculation and a 1-D or 2-D equilibrium calculation. Four 1-D transport equations are 
solved simultaneously for the ion density, electron entropy, ion entropy and toroidal magnetic 
flux. The transport equations for these adiabatic quantities are independent of the time rate of 
change of the poloidal magnetic flux. This choice of dependent variables eliminates some of 
the coupling of the transport and equilibrium calculation. The physical processes which are 
modeled by the transport calculation are classical transport using Braginskii transport coef- 
ficients, Joule heating of the electrons, collisional transfer of energy between ion and electrons, 
charge exchange loss of ion energy, radiation cooling of electrons due to impurities, heating of 
ions by neutral beams and enhancement of electron thermal conductivity by a given factor. 
The equilibrium calculation consists of the solution of the 2-D Grad-Shafranov equation in 
the r, z grid. Or, if the adiabatic quantities have not changed much, the 1-D flux surface 
averaged Grad-Shafranov equation is solved. 

1. INTRODUCTION 

This paper describes a computer code for the calculation of the evolution of a lield- 
reversed axisymmetric plasma. The plasma is assumed to occupy the region inside the 
separatrix. The magnetic field lines inside the separatrix are closed and form nested 
toroidal srfaces. Outside the separatrix (Fig. 1) the field lines are open. The magnetic 
field is reversed in the sense that the magnetic field on the axis of rotational 
symmetry, r = 0, inside the plasma is in the direction opposite to the external guide 
magnetic field. 

This code differs from most tokamak transport codes in that the independent 
variables is proportional to the poloidal magnetic flux instead of the toroidal 
magnetic flux. The poloidal flux is used because some of the simulations have zero 
toroidal magnetic fields. The computational region of this code includes a separatrix 
which includes r = 0. 

The code is used to model the Beta II magnetized coaxial plasma gun experiment 
at Lawrence Livermore National Laboratory. In the Beta II experiment a toroidal 
plasma is injected into a flux conserving cylinder from a plasma gun. The code 
describes the subsequent evolution of the plasma. The flux conserver used in this 
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FIG. 1. Flux surface structure in the r, z plane, Symmetry is assumed about the z = 0 plane. 

simulation is a closed can which is symmetric about z = 0. In the actual experiment 
the can has a hole in one end through which the plasma enters. The axisymmetric 
magnetic field can be written as 

B=vyXve+fve. (1) 

The toroidal angle is 8. Inside the separatrix the surfaces of constant w form closed 
troidal surfaces. f is the toroidal magnetic field times the radius r. 

With an axisymmetric magnetic field and with the assumption that the plasma is 
near thermodynamic equilibrium, it can be shown that the particle density, N, and the 
temperatures, T, and Ti, are functions of v and time t only ]l]. Also the toroidal 
magnetic field function, f, is a function of y and t only [ 11. The plasma is assumed to 
be in a state of approximate force balance. The lowest order momentum equation for 
the plasma is 

VP= JxB -. C 

The w function which describes the equilibrium is the solution of the Grad- 
Shafranov equation [ 2 ]. 

(3) 

which is obtained from Eqs. (1) and (2). The pressure, P, in this equation is the sum 
of the ion and electron pressure. Since the plasma is assumed to be near a ther- 
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modynamic equilibrium, the evolution of the plasma parameters can be described by 
a diffusion equation. There are four plasma parameters which are advanced in time 
with the FRT code (Field Reversed Transport). These quantities are 

Q, =NiS,, Q2 = P, S;/“, (44 

Q3 = P&l’, Q., =fsz. (4b) 

The plasma is assumed to consist of only ion and electrons. The S, and S, in the 
above equations are integrals over the closed flux surfaces. 

S,=j"& 

s = . d2r 1 
2 1 

-- 
IVPl r2’ 

The independent variable for the transport equation is 

(5) 

(6) 

where 

Ws=Wm--b* (7b) 

Where w,,, is the value of w on the magnetic axis, and wb is the IJ value on the 
boundary of the plasma, the separatrix. 

The quantities Q, , Q2, Q3 and Q4 were chosen as dependent variables because they 
are adiabatic quantities. That is, if there is no diffusion, these quantities are constants. 
The first of these quantities, Q,, is proportional to the number of ions between 
adjacent flux surfaces. A transport equation for the electrons is not needed since, due 
to quasineutrality, the electron density is equal to the ion density. The Q2 and Q, are 
proportional to the electron and ion entropy between adjacent flux surfaces. The 
fourth quantity, Q4, is proportional to the toroidal magnetic flux enclosed between 
adjacent flux surfaces. 

The advantage of using these quantities for dependent variables is that the 
transport equations do not depend on the flux surface velocity, which is proportional 
to ~?J~/at. This simplifies the iteration in the solution of the transport equations. 

Boundary conditions are applied to transport equations at the separatrix @ = 1). 
The boundary conditions are based on the assumption that the particle density and 
temperatures are given at the separatrix. Also the toroidal magnetic flux function,f, is 
set to zero on the separatrix. The boundary conditions at the o-point are that the 
particle and heat fluxes are zero. 

The physical process is envisioned as proceeding in two alternating steps: 
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(1) Non-adiabatic step. The diffusion process occurs. A set of 1-D transport 
equations advance the quantities Q,, Q,, Q, and Q4, 

(2) Adiabatic step. The quantities Q,, Q2, Q, and Q4 are assumed to be 
constant. The 2-D equilibrium equation (3) is solved, or the flux surface averaged 
Grad-Shafranov equation is solved. 

The plasma properties are advanced by this “alternating dimension method.” A 
review of this method is given by Grad [2]. Similar 14 D transport codes have been 
used to study transport in tokomaks [ 3-61. 

In Section II the transport equations are derived. They are obtained by averaging 
the transport equations of Braginskii [7] over a surface of constant w. The method of 
solving the set of transport equations are given in that section. In Section III the 
method of solving the Grad-Shafranov equation is given 181. In Section IV the 
coupling of the equilibrium and transport calculation is presented. Some results of the 
FRT code are given in Section V. 

II. TRANSPORT CALCULATIONS 

A. Introduction 

In this section the 1-D transport equations will be derived by averaging the 3-D 
Braginskii transport equations over a surface of constant p. The plasma is assumed to 
consist of hydrogen (or deuterium). 

In the experiment processes other than classical transport are important. The 
computer code attempts to account for this by including models for other processes. 
Radiation cooling of electrons due to the presence of impurities is included by using 
the data by Post et al. 191. The impurity density is assumed to be a given function of 
p. Anomalous transport of electron energy is accounted for by increasing the electron 
thermal conductivity by some given factor. Neutral beam injection is included as a 
source in the ion entropy equation [lo]. 

In this section the 1-D transport equations for the four quantities Q, , Q2, Q3 and 
Q., are derived. These four equations are written in the form 

@kQ,J + C, + D,AlQ, 
I 

+ i E d(AkQk)+F,,kAkQk +G, * I= 1,2,3,4, (8) 
k=l ‘*k dp I I 

where the transport coefficients B,,,, C,, D,, E,,k, F,,, and G, will be derived in this 
section. 

The constants A, are 
A, = S;‘, A, = ST~‘~, (94 
A, = S;‘13, A, = S;‘, WI 
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so that 

The Y’s are 

Ni=Q,A,, P,= Q,A,, 

Pi=QjAJ, f = QzA- 

9,= 1, 9f* = s y, 

Y3 = sy, Y4= 1. 

(9c) 

(94 

(W 
WI 

B. Particle Transport Equation 

The 1-D particle transport equation is derived from the particle conservation 
equation. 

$ + V . (Niui) = 0, 

where the ion fluid velocity is ui. The component of ui which is needed in the 
averaged particle transport equation is obtained from the first order ion momentum 
equation. The zeroth order momentum equations are 

VP, = -eN, ue x B [ 1 c ’ 
U.X B 

VP,=eN, I . [ 1 c (lib) 

These equations contain the large component of U, and ui which are in the plane of 
the flux surface and do not contribute directly to the transport of particles across a 
flux surface. The sum of these two equations, (1 la), (1 lb), will yield the pressure 
balance equation (2). 

The next order momentum equation will yield the ui need in the transport equation 
(8). This equation is 

1 = R. 

Any contribution due to an anisotropic pressure tensor, V . Pi, has been ommitted. 
If included, this term would lead to a neo-classical transport term which would 
require a kinetic theory treatment. 

The momentum transfer term given by Braginskii consist of two terms. 

R=R,+R,. (13) 
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The first term, R,, is due to the relative velocity between ions and electrons. 

The other term is the thermal force contribution. 

3 N. R,=--2 2 w r bXVTe. 
e e 

The unit vector in the direction of the magnetic field is b. The electrical conductivities 
are 

u,, = 1.960,, 
e2Nir, 

UI=-’ 
me 

The electron and ion gyrofrequencies are 

eB eB 
co,=-, w.=-. 

w 
I mic 

The electron and ion collision frequencies are 

3m9w 
(184 

(18b) 

Since the magnetic field structure is assumed to be given during the transport 
calculation, the parallel and perpendicular currents are also given, 

J,,= ?!tdf+$$ b, 
4~ dy/ 1 

J,=$bxVP. 

The time derivative at constant p is given by 

(19) 

where V, is the velocity of a surface of constant p. It is related to p, (- = a/at), by 

v,.vp=+ (224 
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or in terms of v, 

v *,P=wkn(l-P)-~bP 
P 

ws 

The particle conservation equation (10) is integrated over a surface of constant p, 
using Eq. (21) 

I 
d2r dN. d2r -I- 
IVPI dt I 

-V, . VN, = - $1 d3r V . (N,q). 
IVPI 

(23) 

The second term on the left-hand side is changed into a volume integral then 
integrated by parts. The right-hand side is also integrated by parts. The surface 
integral term from the integration by parts of the second term on the left-hand side is 
combined with the term on the right-hand side. Using the relation, 

I 
v ,d . d2r 

’ dt (VPJ’ J 

Eq. (23) becomes 

The right-hand side of this equation is obtained by taking the dot product of the 
momentum euation (12) with VW X B. By using the form of the magnetic field, (l), 
and the 8 component of Faradays’s Law the E x B . Vp term can be written as 

B2 av 
ExBJv/=-JE.B-~. 

Using Eq. (26) the momentum equation becomes 

(Ui - V,) * vp = +- jfE-B+ 
6 

The E . B term is obtained by taking the dot product of the momentum equation (12) 
with B. The R x B . VW term is evaluated using Eq. (13). The particle transport 
equation is then 

&NJ,)=-; ]F [- 
6 

+ was1 
,zk(l -PI+- @*PI I! . (28) 
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The additional surface integral which appear in this equation are 

(29) 

(30) 

C. Electron Entropy Ttransport Equation 

An equation will be derived in this section to advance QzSi13 which is propor- 
tional to the electron entropy. This equation is derived from the electron temperature 
equation of Braginskii, 

1 +P,V.u,=-Vaq,+Q,, 

where qe and Q, are given by 

3 N.T 
q’=+/bx u,-4.66 mN;;, VT -LCNiTe e 

e e e 
; .kT 

2 eBb x VT,, 

J:, J: Q,=T+;+z-Q,. 
I I 

(32) 

(33) 

The collisional transfer of energy between electrons and ions is given by 

Qd = $$ (T, - Ti). 
, e 

(34) 

It is assumed that all the Joule heating goes into the electrons. The particle transport 
equation is used to change Eq. (3 1) into an equation for aP,/at. The equation for 
aP,/& is integrated over a surface of constant p. After a few steps similar to the ones 
used in the last section, the surface averaged transport equation for P, becomes 

(35) 

The V, . Vp term on the right-hand side can be changed to a dS,/dt term and 
combined with the left-hand side to give a transport equation for P,S:‘3. 

The second term on the right-hand side of Eq. (35) which represents the energy 
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change due to work done by a flow against a pressure gradient, can be written in 
term of transport coefficients from the particle transport equation 

2 dP d’r -2 
I ---VP* (%-VP) 

3 dp IVPI 

= d(ABbe,) gl +++ (AkQk) + d(A;pQz+. (36) 

The right-hand side of the above equation contains terms which are the product of 
two gradient terms. The first term on the right-hand side of this equation can be 
written in terms of a double sum over gradients and a symmetric matrix s,“,,, 

This term is in a symmetric form. When it is differenced, the derivatives in the square 
brackets will be treated explicitly and the other implicitly. This is equivalent to 
treating each gradient in this term as half implicit and half explicit. The non-zero 
elements of the s:,~ matrix are, 

B sw-sw- 131 
2.1 - 1.2 - 3N,’ Pa) 

Wb) 

The terms in Eq. (35) which contains Q, also contains terms which are products of 
two gradients, since Q, is proportional to currents squared, and the currents are 
proportional to the gradients. This term can be written as 

Where the non-zero elements of the sJ,,~ matrix are 

SST@? 

-5y’ 
(404 
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(4Oc) 

(4Od) 

VW 

(4Of-l 

(4W 

Ph) <w: s5 + f’s,). 

The surface integral S, is 

(41) 

The electron entropy equation can now be written as 

D. Ion Entropy Equation 

The flux surface averaged ion entropy transport equation is derived from the ion 
temperature equation given by Braginskii, 

(43) 
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where qi and Q, are given by 

5 cN.T. 
qi=-Z 2NiTi V,T, +T+ 

m,wi ti b x VT,, (44) 

Qi=Qd* (45) 

The derivation of the ion entropy equation is similar to the derivation of the 
electron entropy equation, the result is 

$$(pis:i3)=-; ]$$2”;s3 (2)‘” (;)” (.f$- Ti$) 

1 s e I 

( 

4 B,kd 
++pi C 

k=l 
--(a,g,)+~[IL,(l-P)+ui,Pl 

*, dp )I 

+ m$l kil $ (Am&> sin,kf @kQk) 

+$(a,Ql)f+- s [q,,,(l -P> + &PI + ‘;;;’ V’e -Pi)* (46) 

The non-zero elements of the s;,~ matrix are 

(47b) 

(47c) 

(474 

E. Toroidal Magnetic Flux Transport Equation 

The transport equation for the toroidal magnetic flux is derived from the toroidal 
component of Faraday’s Law, 

f$=-cv. (EXV8). (48) 

This equation is changed to d/d& and integrated over a flux surface. The component 
of Ohm’s Law parallel to the magnetic field is used to evaluate E . B in terms of J,, . 
The resulting equation forfS, is 
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-$.D*)=-; - 1 -L&s1 f$+$) + (~:s’4+nf2s*) $1 

+$f [@& -PI + @*PI 
I * 

The quantity advanced in time by this equation, fs,, is related to the magnetic 
stability safety factor, q, by 

(50) 

F. Equation for y,,, 

Transport equations have been given for the four quantities Q, , Q,, Q, and Q4. 
The sum of Q2 and Q3 which is related to the total pressure and Q4 which is related 
to f are needed to compute the new equilibrium. Another adiabatic quantity which is 
needed for the equilibrium calculation is the values of t,u on each surface. The value of 
w on each surface is-determined by the values of p on each surface, w,,, and w,, . The 
coordinate p is independent of time. The value of w at the separatrix, vb, is set to 
zero for all times. An equation for the evolution of w,,, is needed to determined v on 
each surface. 

To obtain an equation for v/,,, Eq. (26) is evaluated on the magnetic axis, p = 0. At 
this point Vy = 0. 

(51) 

The right-hand side of this eqution is evaluated using the component of the 
momentum equation parallel to b. The resulting equation for @,,, is 

C2 

Wm= lYsa\\ 

This equation is evaluated at each time step to obtain a new value of w,,,. 

G. Summary of Transport Coeflcients 

In this section the classical transport coefficients, B,,k, C,, D,, E,,k, F,,, and G,, 
are given for each of the four equations 1= 1, 2, 3 and 4. These coefficients go into 
the transport equation of the form given by Eq. (8). The coefficients which are zero 
are not listed. 

I = 1 particle transport coeffkients: 

B Pa) 
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Bl,2=-Ni$ ($-&j, 

Bl,3=-Ni$ ($+2), 

B,,, = -N$ fsl 
I//; zqy’ 

D, = $ [li/,(l -P> + VibPl. 

(53b) 

(53c) 

(534 

We) 

I= 2 electron entropy transport coefficients: 

%I= f T,B,,, +P,++.n,4.66, (544 
6 1 

B2,,=$Te~,,,+e$$ 
6 1 

Bz,, = -+ TeB,,, 9 

D,=+D,, 

Ez,, = ,i <s& + s:,,> $ VkQk), 
&=I 

(54c) 

(544 

(544 

Wf) 

k=l 

J%,, = f: b:k + d,k) $ (A&Q&), 
k=l 

(5W 

WI 

(54i) 

F2.2=- 

2e2N,S, F _ b2NiS, 
3 W) 

ml=, 
3 2,3- 

miol 

G, = Gyad’. WI 

The coefficient a, in equations (54a-54k) is a factor which will be set to one for 
classical, but will be greater than one for the simulation of anomalous electron 
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thermal conductivity, as described in Section J. The radiation cooling term Gtad’ is 
given in Section H. 

I = 3 ion entropy transport coefficients: 

E3,, = Ii Ck$ (A~Q~), 
k=l 

E3,2 = i si,k f (A,&>, 
k=l 

E3,3= i &&‘=f,Q,)++,, 
k=l 

E3,4 = i s: k d 
k=l 

, dp (AkQkh 

F3,2 = 

2e2NiS, 
F3.3 = - 

2e2NiS, 
m,o, ’ T?liCJ, ’ 

(5%) 

WI 

(55i) 

(Vi) 

G3 = G:beam) + Gy), (55k) 

where the term due to beam heating, Gibeam) and charge exchange loss, Gy), have to 
be added; these terms will be described in Sections I and K, respectively. 

I = 4 toroidal magnetic flux transport coefficients: 

B4,2=-$$, 6 

B =-_ff_Js, 
493 

wi 011 ’ 

(564 

WI 

581/45/2-Y 
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B 4.4 - ” h@, +.f’s,) 
vi 47ru,, ’ (56~) 

In the following four sections the coefficients are given for physical processes other 
than classical diffusion (a,, Gyad), Gibeam) and Gp’). 

H. Radiation Cooling of Electrons 

A profile of impurity ions is assumed to be given as a function of p. The resulting 
energy loss rate is given in Ref. 191, which assumes a coronal equilibrium, 

.YR = N,N,L,(T,). 

Where N, is the impurity particle density, and L(T,) is given in Ref. [9] as a 
polynomial in log(T,). The radiation cooling leads to an additional G term in the 
electron entropy equation (I = 2), 

#fad) _ 
2 -+,N,N,L,(T,). 

I. Neutral Beam Heating 

The calculation of the deposition of neutral beam energy uses a code developed by 
Boyd [ 101. The source term which goes into the ion entropy equation, Gibeam), is the 
flux surface average of a three-dimensional deposition profile. The temperatures and 
density on the r, z grid are used to compute the attenuation of the beam. The energy 
deposition rate is then given on the r, z grid. This rate is then averaged over each flux 
surface to give the term which goes into the ion entropy equation. 

J. Anomalous Electron Thermal Conductivity 

Many plasma experiments indicate that the electron thermal conductivity is larger 
than classical. This anomalous thermal conductivity is modeled in the FRT code by 
multiplying the classical thermal conductivity by some given factor a, which appears 
in Eqs. (54a)-(54k). 

K. Charge Exchange Loss 

A slab model is used to approximate a neutral gas profile as a function of p. The 
neutral density is used to compute a charge exchange loss term in the ion entropy 
equation. The neutral gas is assumed to flow into the plasma at some given thermal 
speed, v,. The neutral density is computed surface by surface using an attenuation 
factor determined by charge exchange, ion ionization, and electron ionization cross- 
sections. The cross-sections for these processes are given as polynomials in Ref. [ 111. 
The neutral density N, on the outer flux surface is assumed to be given. The neutral 
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density on the next flux surface inward, N,,j-,, is computed from the density on the 
jth flux surface, NU,j by 

N u,j- 1 = N,.jexP 

The attenuation factor ,U is given by 

,U = No, + N,(UV)i + Ni(UV)X> (60) 

where (au),, (ov)~ and (uv), are respectively the electron ionization, ion ionization 
and charge exchange cross-sections. lj+ ,,* is an average of the distance between the 
surfaces of constant pi and pi-, . An approximation for this quantity can be obtained 
from the difference in p between the surfaces, Apj- ,,*, and the S, and S, . 

lj- l/2 (61) 

With the neutral density given on each flux surface, the charge exchange loss term 
can be added to the ion entropy equation. 

Gy’ = 4, TiNiN,(u (62) 

L. Finite Dzperencing of the Transport Equations 

The p grid is indexed by the subscript j. The o-point corresponds to j = 1 @, = 0), 
and the separatrix is j = M @, = 0). A superscript n is added to denote the time 
level. The transport equations will be solved for Ql+J’ given the values Q~,j. The 
various terms in the transport equation (8) will be differenced. The B term is 

f Bl,k; (A,Q,) = A;‘i;“” 
I 

Akn,j- 1 Q,",:-! 1 
i J l/2 

( 

B II+1 
l.k.j-l/2 

B”+l 

- 

APj APj- l/2 
+ 

I,k,j+ l/2 

APiAPi+ l/2 
A kn.j Qi,; ’ 

B if+1 
+ l,k,j+ l/2 

APjAPj+ l/2 
Akn,j+lQi,;:,* 

The C term is differenced as 

dC, 
dp= 

C;,;: ,,2 - c;l,;: 1,2 

APj ’ 

(63) 

(64) 

A pseudo upwind method is used to difference the D term. This method is used 
because the convection due to w,,, can be large near the o-point. 
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+ %:1,2u - c7:1,2) A” 

APj 
l.J+ 1 

Qn+ 1 
l,J+ 1 * 

The value of < is determined by the sign of D. 

if D;l,j+:1,2 < 0 then rl+j’: 1,2 = 0, 

if D$:,,2 > 0 then <y,,‘: ,,2 = 1. 

The E term is differenced as 

E,,, $ (A,Q,> = E;,:,; Ai,j+ 1 Qt.:: 1 -At,j-,Qt,;i, 
APj- l/2 + AP./+ l/z * 

The left-hand side is differenced as 

dQ/ Q;+' - QF' 
-ii= At ’ 

(65) 

(664 

(66b) 

(67) 

(68) 

The simultaneous solution of the transport equations yields a block tridiagonal 
system to solve. 

i (a,,k,jQiJi 1 + b,,k,jQkn$ ’ + C,,k,jQi;: 1) = d,,j, I= 1929 39 49 (694 
k=l 

where, 

Bn+l n+l 

b1,k.j = 9Y.j 
I ( 

- $ 
I,k,j- l/2 B I,kJt 112 

J APj- 112 + APj+ l/2 1 
-F”“. 

I.k,J 

- ‘Lk 

Dllil 

- 
r,j+ I/zG’,$: l/2 + Di’,fJ ~(1 - G’,fl1/2) 

APj 11 
6 

APj 
Ai,j + $3 (69~) 
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c 

and 

The transport coefficients, B,,k,j, C,,j, D,,j, E,,k,j, F,,k,j and G,,j, can be computed 
explicitly, that is, at the n + 1 time level as shown, or implicitly, at the n time level. 
6,,, is the Kronecker delta function. 

The block tridiagonal system has blocks of size 4 by 4. If the coefficients are 
computed explicitly then the solution is iterated, computing the coefficients at each 
iteration until some convergence criterion is satisfied. One quantity in the solution 
which is not computed at the n + 1 time level is the quantities which are determined 
from the equilibrium calculation. These are quantities which depend on S, , S,, S,, 
S, and S,. 

The boundary conditions which are used in this calculation is that the densities and 
temperatures are given on the separatrix. The toroidal magnetic flux function, f, is 
zero on the separatrix, since the surface goes to r = 0 and there can not be any 
infinite current flowing up the z axis. The boundary conditions used at he o-point is 
that the particle and heat fluxes are all zero. 

III. EQUILIBRIUM CALCULATION 

Two types of equilibrium calculations are used in the FRT code, a 1-D 
equilibrium calculation which is done after each transport calculation, and a 2-D 
equilibrium calculation which is done only when the adabatic quantities Q, , Q,, Q3 
and Q4 have changed significantly. The 2-D equilibrium calculation will be described 
first. 

The equilibrium is determined by the poloidal magnetic flux function ~(r, z). The 
central equation in the determination of v in an axisymmetric plasma is the Grad- 
Shafranov equation which is (3). 

The left-hand side is an elliptic operator which would imply boundary conditions 
on the boundary of the r, z grid. The right-hand side looks like an ordinary 
differential equation, which would imply boundary conditions at one end of the w 
range. The quantities which are computed by the transport calculation which 
determine the equilibrium are the adiabatic quantities, Q,@), Q,@), Q3@), Q4@) and 
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w,. The total pressure, P, and the toroidal magnetic flux functionfare given in terms 
of Q2, Q3 and Q4 as 

The S, and S, in the above equations are integrals over surfaces of constant w and 
thus depend on ~(r, z). 

A method of solving Eq. (3) with Q2, Q3, Q4 and I,Y,,, given has been given in 
Ref. [2]. This method consists of alternating between Eq. (3) which determines 
~(r, z) and the flux surface average of Eq. (3), which is 

d 
- 
fl 

where the average of any function F is 

(72) 

(73) 

The integrals are over surfaces of constant p. The volume enclosed by a surface of 
constant w is r(w). The function K is 

The first step in the determination of the equilibrium is guessing values of the v/ 
function, or using the values from the last time step. With the values of w given the 
S, and S, can be determined. With the S, and S, given the P and f can be computed, 
and Eq. (3) is solved for w in a rectangular region by an Incomplete Cholesky 
Conjugate Gradient (ICCG) method, 181. It was found that the AD1 (alternating 
direction implicit) scheme did not converge well due to the nonlinear nature of the 
problem. The rz grid used in the 2-D equilibrium calculation can have variable grid 
point spacing (this feature was not used in the calculation presented in Section V). 
This allows grid points to be concentrated where more accuracy is needed. Cyclic 
reduction methods could not be used for the 2-D calculation due to the use of 
variable grid spacing. 

The total flux w is the sum of vacuum flux and plasma flux. The vacuum flux is 
caused by external coils and is helf constant unless the coil current changes in time. 
The boundary value for the 2-D solution of (3) then consist of the vacuum flux value 
of the boundary plus the plasma flux value on the boundary. For the case of a 
conducting wall at the boundary the plasma flux is zero. For an open system the 
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plasma flux on the boundary is obtained by integrating the appropriate Green’s 
function times the plasma current, over the plasma volume. 

The computed values of w on the rz grid will give a value of t,u at the o-point, v,,,. 
However, this value of vrn will not necessarily be the desired value which is deter- 
mined by Eq. (52) or the initial conditions. Now Eq. (72) is solved for w over the 
range of F = 0 to Y = rYr, the volume enclosed by the separatrix. The boundary 
conditions which are used is that wb = w(F’J and w, = ~(0) are given. This equation 
is solved by a tridagonal method 181. The function K is held constant during the 
solution of (72). The average of l/r2 is also held constant during this 1-D 
calculation. Once w(Y) is known then a new S, can be computed by 

-1 

s,=-ly, -g . 

i ) 
(75) 

With S, given and a new S, obtained from the average of l/r’, a better value of 
the right-hand side of Eq. (3) is determined. Equation (3) is then solved, with w being 
given on the boundary. Now a more accurate value of the v function is available and 
the integrals S, and S, are determined again. The computation, which consist of 
alternating between the solution of the 1-D equation (72) and the 2-D equation (3), 
continues until some convergence criterion is satisfied. 

When only a 1-D equilibrium solution is required, only Eq. (72) is solved. This 
determines a new value of S, . The other surface integrals, S,, S, , S, and S, , which 
are needed in the transport calculation, are determined by assuming that they change 
by the same fraction as S, changed by. 

IV. COUPLING OF THE TRANSPORT AND EQUILIBRIUM CALCULATION 

The calculation starts with the determination of an initial equilibrium. With the 
equilibrium determined, the sum of Qr and Q, is given as well as Q4 and w,,,. At this 
point the parameters of the plasma are not yet completely determined. The quantity 
Q, must be initialized, which determines the prticle density, Ni. Also the way in 
which the total entropy, Q2 + Q3, is divided up between ion ad electron must be 
specified. With the equilibrium given the quantities S, , S,, S, , S, and S, as defined 
by Eqs. (5), (6), (29), (30) and (41) are computed. The transport equations now 
advance the Q, , Q,, Q3, Q4 and w,,, to the next time value. 

One of the most costly parts of the code in terms of computer time is the 2-D 
equilibrium calculation. This is mainly due to the fact that the 2-D calculation has 
many more grid points than the 1-D transport calculation. In some problems the 
equilibrium does not change very much during the transport calculation. In order to 
eliminate some unnecessary calculation, some of the equilibrium calculations only 
solve the 1-D equilibrium equation. 

The value of the right-hand side of the surface averaged equilibrium equation is 
used to determine if a 2-D equilibrium needs to be computed. When a 2-D 
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equilibrium is computed the values of the right-hand side of the 1-D equilibrium, 
Eq. (72), is saved at each value of p. After each transport calculation, the right-hand 
side of the I-D equilibrium equation, (72), is computed, assuming that S, and S, 
have not changed. This value is compared with the value which has been saved. If the 
difference (squared and integrated over the volume of the plasma) of these two right- 
hand sides is smaller than some given value (usually a few percent), then only a 1-D 
equilibrium is computed. If the difference is large, then a full 2-D equilibrium is 
computed. When only the 1-D equilibrium is computed, only S, is recomputed. The 
old values of S, , S,, S, and S, are multiplied by the ratio of the new S, to the old 
S,, to obtain new values of S,, S,, S, and S,. 

The transport, equilibrium loop is completed by advancing the time and continuing 
or stopping the run. 

V. EXAMPLE OF FRT CALCULATION 

In this section an example of the calculations performed by the FRT code will be 
presented. This example is a simulation of the Beta II experiment at Lawrence 
Livermore National Laboratory. In this experiment a plasma is injected into a cylin- 
drical flux conserver made of copper. The code simulates the decay of the plasma and 
magnetic fields after the plasma is in the flux conserver. There is no neutral beam 
heating in this simulation. 

There is assumed to be a uniform guide magnetic field of 100 G in the z direction. 
The value of the plasma flux on the boundary is zero so the flux due to the guide field 
is used as the boundary condition for the 2-D equilibrium calculation. The guide 
magnetic field is assumed to have penetrated the flux conserver. The magnetic fields 
due to the plasma are assumed to be confined by the flux conserver. These 
assumptions are based on the differences in the time scales. The guide field is 
assumed to have been on for a long time, whereas the magnetic fields due to the 
plasma currents exist only for a short time, and will not have time to penetrate the 
flux concerver. 

The initial flux surfaces, surface of constant w, are shown in Fig. 1. The initial 
magnetic field at z = 0 is approximately 1.5 kG on the flux conserver, and approx- 
imately -3.1 kG on the axis of rotational symmetry, r = 0. The poloidal magnetic 
field is zero at r = 24 cm and z = 0. This is the o-point. The totoidal magnetic field is 
zero on the separatrix, a condition which must be held at all times. The initial peak 
value of the toroidal magnetic field is 2.9 kG near the o-point. The initial total 
toroidal current carried by the plasma is 154 kA. 

The initial electron and ion temperatures were 5 eV in the center and 0.1 eV on the 
separatrix. *The initial central deuterium ion density is 1.24 x lOI cmw3 and 
1 X lOi cmP3 on the separatrix. 

Oxygen impurity is assumed to exist in the plasma with a uniform density of 
1 X lOi cmP3, or approximately 0.8% of the central ion density. An anomalous 
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FIG. 2. Profiles (a) electron pressure, (b) electron temperature, (c) particle density. Profiles are 
ploted as a function of r at z = 0. 

electron thermal conductivity is used which is 100 times the classical thermal conduc- 
tivity. The neutral density at the separatrix, which is needed for the charge exchange 
ion energy loss, is 1 x 10’ i cm -3. In this calculation the charge exchange energy loss 
is insignificant. 

Figure 2a is the profile of the electron pressure at various times. Figure 2c is the 
profile of the electron density at various times. Although the ion density increases a 
small amount at the center, the total number of particles in the plasma decreases 
slowly. The initial number of particles is 9.48 x 1019, and at the end of the run, 
175 psec, the number of particles is 8.13 x 1019. 

0 17 pet 111 psec 175psec 

FIG. 3. Profiles (a) toroidal current density, (b) poloidal magnetic flux and (c) toroidal magnetic 
flux. Profiles are ploted as a function of r at L = 0. 
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FIG. 4. Total toroidal current vs time. 

The electron temperature profiles are given in Fig. 2b. The collisional tranfer of 
energy between electrons and ions keeps the ion temperature close to the electron 
temperature. They differ only by a fraction of an eV. The flattening of the 
temperature profile is caused by two effects. First, the thermal conductivity tends to 
flatten the profiles. Secondly, the peak in the current density which causes Joule 
heating is initially peaked at approximately r = 16 cm (the o-point is at 24 cm). The 
Joule heating term which appears in the electron entropy equation is the flux surface 
average of the 2-D Joule heating. The resulting 1-D heating term is peaked off the o- 
point. Thus the electrons are heated more off the o-point, resulting in a slight 
inversion of the temperature profile. The toroidal current density profiles are shown 
in Fig. 3a. 

The profiles of the poloidal magnetic fields are given in Fig. 3b. At the end of the 
run the poloidal field at r = 0, z = 0 is -900 G and at the flux conserver it is slightly 
over 600 G. 

The profiles of the toroidal magnetic field are given in Fig. 3c. The peak in the 
toroidal magnetic field occurs near the o-point. The peak value of the toroidal 
magnetic field at the end of the run is about 800 G. The magnetic stability factor, q, 
Eq. (50), at the o-point is initially 0.72 and at the end of the run it is 0.56. The total 
toroidal current carried by the plasma, which is shown in Fig. 4, has decayed from its 
initial value of 154 kA to 52 kA at the end of the calculation. The slight jumps in the 
curve are the points where the 2-D equilibrium are computed. 

Figure 5 is a plot of the value of the electron temperature at the o-point vs time. 
There is an initial transient where the central temperatures increases from 5 to about 
6.5 eV in about 15 psec. After the transient has decayed the electron temperature is 
determined by a balance between Joule heating and radiation cooling due to 
impurities. The main flow of energy in the system is from the large reservoir of 

Time (psec) 

FIG. 5. Electron temperature at o-point vs time. 
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FIG. 6. /I (plasma kinetic energy enclosed by separatrix divided by magnetic energy enclosed by 
separatrix) vs time. 

magnetic field energy into the electrons via Joule heating. The electrons lose the 
energy by radiation. The other processes in the electron entropy equations are small, 
in this parameter range, compared to Joule heating and radiation cooling. In the ion 
temperature equation the thermal conductivity loss across the separatrix is balanced 
by collisional transfer of energy from the electrons. The ion and electron temperature 
slowly decay as the magnetic field energy reservoir is depleted. The electron and ion 
temperatures are about 3 eV at 175 psec. The initial magnetic field energy is 2.66 kJ 
and at 175 psec it is 0.89 kJ. The /3, shown in Fig. 6 (the total plasma energy enclosed 
by separatrix divided by the total magnetic field energy enclosed by separatrix) is 
initially 0.07 and at 175 psec it is up to 0.50. 

Figure 7 is a plot of the toroidal magnetic flux (enclosed by the separatrix) as a 
function of time. Figure 8 is a plot of the poloidal flux (between the o-point and 
separatrix) as a function of time. Both the toroidal and poloidal magnetic fluxes are 
very close to being a linear decay in time. 

There is very little change in the shape of the flux surfaces during the calculation. 
There is no apparent change in the position of the o-point. The crossing of the 
separatrix and the z = 0 plane is initially at 38.5 cm, and at 175 psec it has moved in 
to 36.3 cm. 

The dominance of the energy loss by impurity radiation is typical of the perfor- 
mance of the Beta II experiment [ 121. The decay time constant of the magnetic field 
in the Beta II experiment was approximately 120,~ec 1121 which is about the same 
as this simulation, see Figs. 7 and 8. 

The number of points in the p grid used in this transport calculation was 21. The 
total number of time steps tken was 208. The 2-D equilibrium was computed 20 
times during this run. The size of the r, z grid used in the 2-D equilibrium calculation 

Time (usec) 

FIG. 7. Toroidal magnetic flux vs time. 
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FIG. 8. Poloidal magnetic flux vs time. 

was 64 by 65. Practically all of the 61 min of CRAY computer time required for this 
calculation was used during the 2-D equilibrium calculations. A large fraction of this 
time was spent doing the flux surface averages. 
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